Inhaltsverzeichnis

1.	Auf	gabenstellunggabenstellung	1
	·	.	
2.	Dur	chführung	1
3.	Totl	agenkonstruktion	2
3	3.1	Zeichnerische Analyse von Kurbelschwinge	3
3	3.2	Berechnung zur Ermittlung der theoretischen Werte	3
4.	Das	s weitere Übersetzungsverhältnis	4
4	1.1	Zeichnerische Lösung	5
4	1.2	Rechnerische Lösung	5
5.	Wei	iteres Übersetzungsverhältnis in Diagramm-form darzustellen	6
6.	Lite	ratur	8

1. Aufgabenstellung

Aufgabe 18

Das in Bild 1 dargestellte Gelenkviereck hat in der abgebildeten Getriebelage das Übersetzungsverhältnis 1/i=2. Im Gegensatz zum Getriebe der Aufgebe 17 wird in diesem Falle die Schwingbewegung nicht gleichsinnig, sonder gegensinnig übertragen, Es ist zu untersuchen, innerhalb welcher Bewegungsbereiche für φ und ψ übertragungsgünstige Verhältnisse vorliegen. Die Längen von a und c können dabei unter Berücksichtigung der eingezeichneten *Thales-Kreise* frei gewählt werden. Das Ergebnis ist in Diagrammform darzustellen.

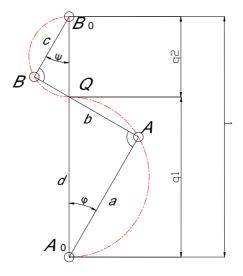


Bild 1. Gegenläufig übertragende Kurbelschwinge

2. Durchführung Die schon gegebenen Parameter von dieser

Aufgabe sind $d = q_1 + q_2 = 1$ und 1/i = 2.

Nach der Formel (1)^[1]

$$1/i = \frac{\omega_2}{\omega_1} = \frac{q_1}{q_2},\tag{1}$$

folgt

$$q_1 = 2/3 \approx 0,667; \ q_2 = 1/3 \approx 0,333.$$

b) Die Längen von a und c können dabei unter Berücksichtigung der eingezeichneten *Thales-Kreise* frei gewählt werden. Nach "*Satz des Thales*"^[2] sind die Dreiecke $\Delta A_0 AQ$ und $\Delta B_0 BQ$ ähnlich. Damit ergibt sich

$$\frac{a}{c} = \frac{q_1}{q_2} = 2. \tag{2}$$

Mit $\varphi_{gewählt} = 30^{\circ}$ folgt

$$a = q_1 \cdot \cos \varphi_{\text{gewählt}} = \frac{2}{3} \cdot \cos 30^\circ = \frac{\sqrt{3}}{3} \approx 0,577,$$

$$c = a/2 = \frac{\sqrt{3}}{6} \approx 0,289,$$

$$b = \langle \overline{AQ} \rangle + \langle \overline{BQ} \rangle = q_1 \cdot \sin \varphi_{\text{gewählt}} + q_2 \cdot \sin \varphi_{\text{gewählt}}$$

$$= \frac{2}{3} \cdot \sin 30^\circ + = \frac{1}{3} \cdot \sin 30^\circ = \frac{1}{2} = 0,5.$$

c) Zusammenfassung der gegebenen und gewählten Parameter:

Übersetzungsverhältnis 1/i = 2. Abstände des Relativpols $q_1 = 2/3 \approx 0,667,$ $q_2 = 1/3 \approx 0,333.$ Länge von Gelenkglied und Kurbel $a = \frac{\sqrt{3}}{3} \approx 0,577,$ $b = \frac{1}{2} = 0,5,$ $c = \frac{\sqrt{3}}{6} \approx 0,289,$ d = 1.

- d) Die gesuchte Ergebnisse:
 - 1) Bewegungsbereiche für φ und ψ
 - 2) Der weitere Verlauf diese Übersetzungsverhältnis 1/*i* in Diagrammform darzustellen

3. Totlagenkonstruktion

Um der Bewegungsbereiche zu bestimmen, müssen zuerst die beiden Totlagenstellungen dieser gegensinnig übertragenden Kurbelschwinge gefunden werden. Und dabei werden die Totlagenwinkel φ_0 und ψ_0 ermittelt. In diesem Kapitel wird die Analyse nach zwei Methoden (zeichnerische und rechnerische Analyse) vorgegangen.

3.1 Zeichnerische Analyse von Kurbelschwinge

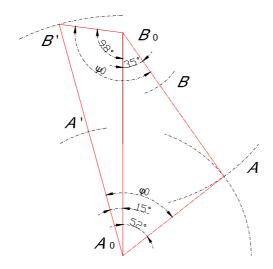


Bild 2. Totlagenkonstruktion

Bei vorgegebener Länge soll eine Kurbelschwinge für die zugeordneten Totlagenwinkel φ_0 und ψ_0 konstruiert werden, s. *Bild 2*. Beide zählen stets im gleichen Sinn, und zwar von der inneren zur äußeren Totlage.

Mittels der Software *AutoCAD 2008* kann das Schema dargestellt wird. Und der Abstände und der Winkelwert können auch einfach gemessen werden.

- 1) Die Kreise um A_0 und B_0 mit Radien $A_0A = a$ und $B_0A = b+c$ werden angetragen. Diese beiden Kreise schneiden sich im Punkt A.
- 2) $\langle AA_0B_0 = 52^{\circ}, \langle AB_0A_0 = 35^{\circ}.$
- 3) Die Kreise um A_0 und B_0 mit Radien $A_0B' = a+b$ und $B_0B' = c$ werden angetragen. Diese beiden Kreise schneiden sich im Punkt B'.
- 4) $\langle B_0 A_0 B' = 15^{\circ}, \langle A_0 B_0 B' = 98^{\circ}.$

5)
$$\varphi_0 = \langle AA_0B_0 + \langle B_0A_0B' = 52^\circ + 15^\circ = 67^\circ,$$

 $\psi_0 = \langle AB_0A_0 + \langle A_0B_0B' = 35^\circ + 98^\circ = 133^\circ$

3.2 Berechnung zur Ermittlung der theoretischen Werte

a) Im Dreieck $\triangle AA_0B_0$, s. Bild 2.

Nach Kosinussatz

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \alpha \tag{3}$$

folgt

$$\overline{AA_0}^2 = \overline{B_0A}^2 + \overline{B_0A_0}^2 - 2 \cdot \overline{B_0A} \cdot \overline{B_0A_0} \cdot \cos(\langle AB_0A_0 \rangle),$$

$$\overline{B_0A}^2 = \overline{AA_0}^2 + \overline{B_0A_0}^2 - 2 \cdot \overline{AA_0} \cdot \overline{B_0A_0} \cdot \cos(\langle AA_0B_0 \rangle),$$

$$\cos(\langle AB_0A_0\rangle) = \frac{\overline{B_0A}^2 + \overline{B_0A_0}^2 - \overline{AA_0}^2}{2 \cdot \overline{B_0A} \cdot \overline{B_0A_0}} = \frac{(0.5 + 0.289)^2 + 1^2 - 0.577^2}{2 \cdot (0.5 + 0.289) \cdot 1} = 0.817,$$

$$\cos(\langle AA_0B_0\rangle) = \frac{\overline{AA_0}^2 + \overline{B_0A_0}^2 - \overline{B_0A^2}}{2 \cdot \overline{AA_0} \cdot \overline{B_0A_0}} = \frac{0.577^2 + 1^2 - (0.5 + 0.289)^2}{2 \cdot 0.577 \cdot 1} = 0.617.$$

Damit ergibt sich

$$< AB_0A_0 = \cos^{-1} 0.817 = 35.19^\circ,$$

 $< AA_0B_0 = \cos^{-1} 0.617 = 52.00^\circ.$

b) Im Dreieck $\Delta B'A_0B_0$

Die Berechnungsvorgehensweise von $< B_0 A_0 B'$ und $< A_0 B_0 B'$ ist ähnlich wie das im Dreieck $\Delta A A_0 B_0$. Damit ergibt sich für die Winkel $< A_0 B_0 B'$ und $< B_0 A_0 B'$

$$$$=\cos^{-1}\frac{0.289^{2}+1^{2}-(0.577+0.5)^{2}}{2\cdot0.289\cdot1},$$

$$=97,60^{\circ},$$

$$$$=\cos^{-1}\frac{(0.577+0.5)^{2}+1^{2}-0.289^{2}}{2\cdot(0.577+0.5)\cdot1},$$

$$=15.43^{\circ}.$$$$$$

c) Im Vergleich zu den Ergebnissen der zeichnerischen Analyse sind die rechnerische Lösung und die zeichnerische Lösung fast identisch.

4. Das weitere Übersetzungsverhältnis

Im Kapitel 3 schon bestimmte Totlagewinkel sind $\varphi_0 = \langle AA_0B_0 + \langle B_0A_0B' = 52^\circ + 15^\circ = 67^\circ$ und $\psi_0 = \langle AB_0A_0 + \langle A_0B_0B' = 35^\circ + 98^\circ = 133^\circ$. Aus dem *Bild 2*. gezeigt es, dass $\langle AA_0B_0$ lieget auf der rechten Seite von $\overline{A_0B_0}$ und $\langle B_0A_0B'$ auf der linken Seite. Deshalb kann Antriebswinkel φ positive wie auch negative Werte annehmen. Positive Werte bedeuten φ auf der rechten Seite, negative Werte auf der linken Seite.

Der weitere Verlauf dieses Übersetzungsverhältnisses und entsprechenden Abtriebswinkels ψ ist in Diagrammform darzustellen für folgende Stellungen der Antriebskurbel φ = -15°, 0°, 15°, 30°, 45°.

In diesem Kapitel wird Antriebskurbel $\varphi = 15^{\circ}$ als Beispiel genommen und ähnlich wie Kapitel 3 nach zwei Methoden analysiert.

4.1 Zeichnerische Lösung

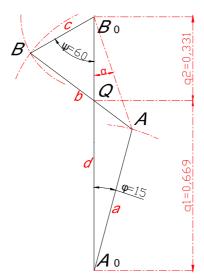


Bild 3. Weiteres Übersetzungsverhältnis

- 1) Der Antriebswinkel $\varphi = 15^{\circ}$ wird in A_0 an $\overline{A_0B_0}$ angetragen.
- 2) Der Kreis um A_0 mit Radien $\overline{A_0A} = a$ werden angetragen. Der Kreis und Antriebswinkelschenkel schneiden sich in A.
- 3) Die Kreise um A und B_0 mit Radien \overline{AB} = b und $\overline{B_0B}$ = c werden angetragen. Diese beiden Kreise schneiden sich im Punkt B.
- 4) $\Psi = 60^{\circ}$, $q_1 = 0.669$, $q_2 = 0.331$.

Damit ergibt sich

$$1/i = q_1/q_2 = 0,669/0,331 \approx 2,02.$$

4.2 Rechnerische Lösung

a) Punkte A und B_0 werden verbindet, s. Bild 3. Im Dreieck $\Delta A_0 A B_0$ mit $\overline{A_0 A} = a = 0,577$, $\overline{A_0 B_0} = d = 1$ und $\varphi = 15^\circ$ nach Kosinussatz folgt

$$\overline{AB_0}^2 = \overline{A_0A^2} + \overline{A_0B_0^2} - 2 \cdot \overline{A_0A} \cdot \overline{A_0B_0} \cdot \cos \varphi,$$

= 0,577²+1²-2·0,577·1·cos 15°,
= 0,218,
 $\overline{AB_0} = 0,467.$

Dabei ist

$$\cos \alpha = \frac{\overline{AB_0}^2 + \overline{A_0B_0}^2 - \overline{A_0A}^2}{2 \cdot \overline{AB_0} \cdot \overline{A_0B_0}},$$

$$= \frac{0.467^2 + 1^2 - 0.577^2}{2 \cdot 0.467 \cdot 1},$$

$$= 0.948,$$

$$\alpha = 18.6^{\circ}.$$

b) Im Dreieck $\triangle AB_0B$ mit $\overline{AB}=b=0.5$, $\overline{B_0B}=c=0.289$ und $\overline{AB_0}=0.467$ auch nach Kosinussatz folgt

$$< AB_0B = 79^{\circ}.$$

Damit ergibt sich für die Antriebswinkel

$$\Psi = \langle AB_0B - \alpha = 79^{\circ}-18,6^{\circ} = 60,4^{\circ}.$$

c) $\overline{B_0Q} = q_2$ ist die gemeinsam Seite von Dreieck $\triangle AB_0Q$ und $\triangle B_0BQ$. Mittels Kosinussatz kann auch q_2 berechnet werden.

Zuerst wird das Gleichungssystem gründet,

$$\begin{cases} x^2 = 0.289^2 + q_2^2 - 2 \cdot 0.289 \cdot q_2 \cdot \cos 60.4^{\circ} \\ y^2 = 0.467^2 + q_2^2 - 2 \cdot 0.467 \cdot q_2 \cdot \cos 18.6^{\circ} \\ x + y = 0.5 \end{cases}$$

$$(x = \overline{BQ}, \ y = \overline{AQ}, \ \overline{BQ} + \overline{AQ} = \overline{AB} = b = 0.5).$$

Mittels Software *Maple 11* wird dieses Gleichungssystem gelöst. Daraus folgt,

$$q_2 = 0.337$$
, $q_1 = 1$ - $q_2 = 0.663$,
 $1/i = q_1/q_2 = 0.663/0.337 = 1.97$.

5. Weiteres Übersetzungsverhältnis in Diagrammform darzustellen

Nach zeichnerischen und rechnerischen Methoden lassen sich weiteres Übersetzungsverhältnis und entsprechender Abtriebswinkel für verschiedene Stellungen bestimmen. Die Ergebnisse sind in Diagrammform darzustellen, s. *Diagramm* 1.

		Ψ	-98°
0 – 15°		1/ <i>i</i>	0
φ = -15°	9	q 1	0
		q_2	1
		Ψ	-87°
φ = 0°	0	1/ <i>i</i>	1,36
Ψ=0	41=0.577	q_1	0,577
		q_2	0,423
	60.0331	Ψ	-60°
φ = 15°	0 - "	1/ <i>i</i>	2,02
,	69970=18	q 1	0,669
		q_2	0,331
	- SEE	Ψ	-30°
φ = 30°	<u>a</u>	1/ <i>i</i>	2
	230.	9 1	0,667
		q_2	0,333

	- Tieses	Ψ	2°
φ = 45°		1/ <i>i</i>	2,56
Ψ = 43	\$17.0=30	q_1	0,281
	T. T.	q_2	0,719

Diagramm 1. Weiteres Übersetzungsverhältnis